skip to main content


Search for: All records

Creators/Authors contains: "Sun, Jianwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V–V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V–V dimer length. The spin-restricted method tends to overestimate the strength of the V–V bonds, resulting in a small V–V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron–electron repulsion, involved in the metal–insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.

     
    more » « less
    Free, publicly-accessible full text available April 7, 2025
  2. The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu–O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew–Burke–Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao–Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.

     
    more » « less
    Free, publicly-accessible full text available February 14, 2025
  3. In density-functional theory, the exchange–correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r′), representing the probability depletion of finding an electron at r′ due to an electron at r. Accurate knowledge of n̄xc(r,r′) has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron–electron cusp using finite basis sets. Focusing on Hooke’s atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke’s atoms, the error introduced by the description of the electron–electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew–Burke–Ernzerhof and local density approximation XC hole models are assessed.

     
    more » « less
    Free, publicly-accessible full text available January 7, 2025
  4. Despite the enormous developments in asymmetric catalysis, the basis for asymmetric induction is largely limited to the spatial interaction between the substrate and catalyst. Consequently, asymmetric discrimination between two sterically similar groups remains a challenge. This is particularly formidable for enantiodifferentiation between two aryl groups without a directing group or electronic manipulation. Here we address this challenge by using a robust organocatalytic system leading to excellent enantioselection between aryl and heteroaryl groups. With versatile 2-indole imine methide as the platform, an excellent combination of a superb chiral phosphoric acid and the optimal hydride source provided efficient access to a range of highly enantioenriched indole-containing triarylmethanes. Control experiments and kinetic studies provided important insights into the mechanism. DFT calculations also indicated that while hydrogen bonding is important for activation, the key interaction for discrimination of the two aryl groups is mainly π–π stacking. Preliminary biological studies also demonstrated the great potential of these triarylmethanes for anticancer and antiviral drug development. 
    more » « less
  5. Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control. 
    more » « less
  6. Strong correlations within a symmetry-unbroken ground-state wavefunction can show up in approximate density functional theory as symmetry-broken spin densities or total densities, which are sometimes observable. They can arise from soft modes of fluctuations (sometimes collective excitations) such as spin-density or charge-density waves at nonzero wavevector. In this sense, an approximate density functional for exchange and correlation that breaks symmetry can be more revealing (albeit less accurate) than an exact functional that does not. The examples discussed here include the stretched H2molecule, antiferromagnetic solids, and the static charge-density wave/Wigner crystal phase of a low-density jellium. Time-dependent density functional theory is used to show quantitatively that the static charge-density wave is a soft plasmon. More precisely, the frequency of a related density fluctuation drops to zero, as found from the frequency moments of the spectral function, calculated from a recent constraint-based wavevector- and frequency-dependent jellium exchange-correlation kernel.

     
    more » « less